Non-Archimedean Ergodic Theory and Pseudorandom Generators

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Archimedean Ergodic Theory and Pseudorandom Generators

The paper develops techniques in order to construct computer programs, pseudorandom number generators (PRNG), that produce uniformly distributed sequences. The paper exploits an approach that treats standard processor instructions (arithmetic and bitwise logical ones) as continuous functions on the space of 2-adic integers. Within this approach, a PRNG is considered as a dynamical system and is...

متن کامل

Pseudorandom Generators, Measure Theory, and Natural Proofs

We prove that if strong pseudorandom number generators exist, then the class of languages that have polynomialsized circuits (P/poly) is not measurable within exponential time, in terms of the resource-bounded measure theory of Lutz. We prove our result by showing that if P/poly has measure zero in exponential time, then there is a natural proof against P/poly, in the terminology of Razborov an...

متن کامل

Brains and pseudorandom generators

In a pioneering classic, Warren McCulloch and Walter Pitts proposed a model of the central nervous system; motivated by EEG recordings of normal brain activity, Chvátal and Goldsmith asked whether or not this model can be engineered to provide pseudorandom number generators. We supply evidence suggesting that the answer is negative.

متن کامل

On Generators in Archimedean Copulas

This study after reviewing  construction methods of generators in Archimedean copulas (AC),  proposes several useful lemmas related with generators of AC. Then a new trigonometric Archimedean family will be shown which is based on cotangent function. The generated new family is able to model the low dependence structures.

متن کامل

Robust Pseudorandom Generators

Let G : {0, 1} → {0, 1} be a pseudorandom generator. We say that a circuit implementation of G is (k, q)-robust if for every set S of at most k wires anywhere in the circuit, there is a set T of at most q|S| outputs, such that conditioned on the values of S and T the remaining outputs are pseudorandom. We initiate the study of robust PRGs, presenting explicit and non-explicit constructions in w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Computer Journal

سال: 2008

ISSN: 0010-4620,1460-2067

DOI: 10.1093/comjnl/bxm101